If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+11t+34=0
a = -4.9; b = 11; c = +34;
Δ = b2-4ac
Δ = 112-4·(-4.9)·34
Δ = 787.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{787.4}}{2*-4.9}=\frac{-11-\sqrt{787.4}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{787.4}}{2*-4.9}=\frac{-11+\sqrt{787.4}}{-9.8} $
| 7x-4(5x-5)=-45 | | -1(-1y+7)=-3 | | n-(3)=7 | | 5y-2+y-6=-9y+10-6y+13 | | -2x+2(-2x-8)=52 | | 7x-6+4-2x=10-5x | | -3x+5(2x+3)=64 | | -3-3(1+6x)=34-8x | | 4x=1=-27 | | 6-9x=33 | | 8(v-8)=-3v-31 | | 10^p-2=28 | | 69=-5x+2(-x+3) | | -7+3x=-4 | | 2(-3x-8+8)=-20 | | -4(5x-4)+4x=2x-3 | | 2-(-3x-8)=1 | | 3x+6x=4x-7 | | 8y-36=4 | | -61=-2x+5(x-5) | | 0=-8(x-5) | | 56x-48=6x+2 | | 75x+20000=x | | 10^x-9=45 | | -28=-3x-2(-3x-4) | | 9x+17=2x-1 | | -5(8+8r)=26-7r | | -28=-3x-2(-3-4) | | 37-(2x+13)=2(x+7)+x | | 6x^2+8x-96=0 | | 1/2x+15+2x-15=180 | | 4x-8-7x=2-5x |